Leveraging the Path Signature for Skeleton-based Human Action Recognition

نویسندگان

  • Weixin Yang
  • Terry Lyons
  • Hao Ni
  • Cordelia Schmid
  • Lianwen Jin
  • Jiawei Chang
چکیده

Human action recognition in videos is one of the most challenging tasks in computer vision. One important issue is how to design discriminative features for representing spatial context and temporal dynamics. Here, we introduce a path signature feature to encode information from intra-frame and inter-frame contexts. A key step towards leveraging this feature is to construct the proper trajectories (paths) for the data steam. In each frame, the correlated constraints of human joints are treated as small paths, then the spatial path signature features are extracted from them. In video data, the evolution of these spatial features over time can also be regarded as paths from which the temporal path signature features are extracted. Eventually, all these features are concatenated to constitute the input vector of a fully connected neural network for action classification. Experimental results on four standard benchmark action datasets, J-HMDB, SBU Dataset, Berkeley MHAD, and NTURGB+D demonstrate that the proposed approach achieves state-of-the-art accuracy even in comparison with recent deep learning based models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition

Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...

متن کامل

Informative joints based human action recognition using skeleton contexts

The launching of Microsoft Kinect with skeleton tracking technique opens up new potentials for skeleton based human action recognition. However, the 3D human skeletons, generated via skeleton tracking from the depth map sequences, are generally very noisy and unreliable. In this paper, we introduce a robust informative joints based human action recognition method. Inspired by the instinct of th...

متن کامل

3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface

Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...

متن کامل

Enhanced skeleton visualization for view invariant human action recognition

Human action recognition based on skeletons has wide applications in human–computer interaction and intelligent surveillance. However, view variations and noisy data bring challenges to this task. What’s more, it remains a problem to effectively represent spatio-temporal skeleton sequences. To solve these problems in one goal, this work presents an enhanced skeleton visualization method for vie...

متن کامل

Co-Occurrence Feature Learning for Skeleton Based Action Recognition Using Regularized Deep LSTM Networks

Skeleton based action recognition distinguishes human actions using the trajectories of skeleton joints, which provide a very good representation for describing actions. Considering that recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM) can learn feature representations and model long-term temporal dependencies automatically, we propose an endto-end fully connected deep LSTM n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1707.03993  شماره 

صفحات  -

تاریخ انتشار 2017